For The Latest Medical News, Health News, Research News, COVID-19 News, Pharma News, Glaucoma News, Diabetes News, Herb News, Phytochemical News, Thailand Cannabis News, Epigenetic News, Cancer News, Doctor News, Hospital News, Oral Cancer News

BREAKING NEWS
Nikhil Prasad  Fact checked by:Thailand Medical News Team Nov 09, 2023  1 year, 2 months, 2 weeks, 1 day, 20 hours, 9 minutes ago

BREAKING COVID-19 News! Study Shows That SARS-CoV-2 Nucleocapsid Protein Has DNA-Melting And Strand-Annealing Properties!

2180 Shares
facebook sharing button Share
twitter sharing button Tweet
linkedin sharing button Share
BREAKING COVID-19 News! Study Shows That SARS-CoV-2 Nucleocapsid Protein Has DNA-Melting And Strand-Annealing Properties!
Nikhil Prasad  Fact checked by:Thailand Medical News Team Nov 09, 2023  1 year, 2 months, 2 weeks, 1 day, 20 hours, 9 minutes ago
COVID-19 News: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, the world has been grappling with the devastating impacts of the coronavirus disease 2019 (COVID-19) pandemic. The virus has not only posed a significant threat to global health but has also wreaked havoc on the global economy. As researchers strive to understand the molecular intricacies of SARS-CoV-2, a groundbreaking study covered in this COVID-19 News report conducted by Zunyi Medical University in China and Guizhou University in Guiyang sheds light on the unique biochemical activities of the SARS-CoV-2 nucleocapsid protein (CoV-2 N). This discovery holds immense importance for drug design and development, offering potential insights into antiviral drug development.


 
SARS-CoV-2: An Overview
SARS-CoV-2 belongs to the beta coronavirus family and is characterized by its spherical, encapsulated structure with a positive-sense single-stranded RNA genome. The virus's genetic makeup includes 11 predicted genes, encoding around 20 functional proteins. Among these proteins, the SARS-CoV-2 nonstructural protein 13 (CoV-2 Nsp13) and nucleocapsid protein (CoV-2 N) exhibit high conservation across different mutants and coronaviruses.

CoV-2 Nsp13, a helicase involved in viral replication, has been extensively studied for its role in inhibiting type I interferon signaling and blocking immune activation during infection. On the other hand, CoV-2 N, the nucleocapsid protein, is essential for viral replication and regulation of cell signaling pathways. Recent studies have proposed CoV-2 N as a potential vaccine candidate due to its high immunogenicity and the ability to induce a robust immune response.
 
The Unprecedented Discovery
The research focused on unraveling the biochemical characteristics of CoV-2 N, leading to an unexpected revelation. While CoV-2 N has traditionally been known for its role in binding to genomic RNA in the nucleocapsid, the study discovered that it possesses DNA-melting and strand-annealing activities.
 
Distinguishing Features of CoV-2 N Activities
Compared to CoV-2 Nsp13, CoV-2 N's DNA-melting activity was found to be more than 22 times weaker, and it exhibited a unique independence from nucleoside triphosphates and Mg2+. Intriguingly, at low concentrations, CoV-2 N demonstrated stronger annealing activity than CoV-2 Nsp13, while at high concentrations, it promoted the melting of double-stranded DNA (dsDNA). These findings present a paradigm shift in our understanding of CoV-2 N and open new avenues for antiviral drug development.
 
Biochemical Insights into CoV-2 N
To comprehend the implications of CoV-2 N's newfound activities, the researchers delved into the biochemical functions of this protein. CoV-2 N was observed to efficiently unwind dsDNA involved in DNA replication, repair, and recombination.
 
Notably, the protein did not exhibi t typical helicase characteristics, and its unwinding activity did not rely on essential cofactors such as ATP and Mg2+. Instead, CoV-2 N displayed a more nuanced behavior, resembling the helix-destabilizing activity of replication protein A (RPA) rather than a traditional helicase.
 
Divergent Unwinding Substrates
While both CoV-2 N and CoV-2 Nsp13 share the same unwinding polarity, they differ significantly in their substrates. CoV-2 N displayed a strict requirement for a 5' overhang of 16 nucleotides, emphasizing its dependence on single-stranded DNA (ssDNA) length. This contrasts with CoV-2 Nsp13, which exhibited properties more aligned with typical helicases, requiring a minimum single-stranded bubble structure of 12 nucleotides.
 
Annealing and Unwinding Dynamics
The study revealed a concentration-dependent duality in CoV-2 N's activities. At low concentrations, CoV-2 N showcased robust ssDNA annealing, while at higher concentrations, unwinding of dsDNA prevailed. This suggests a dynamic role for CoV-2 N in regulating the transition between annealing and unwinding, possibly influencing different stages of viral replication.
 
Implications for Drug Development
The unprecedented findings regarding CoV-2 N's DNA-melting and strand-annealing activities present a unique opportunity for antiviral drug development. Understanding the multifaceted functions of CoV-2 N could pave the way for targeted therapies that exploit the protein's role in viral replication and host cell interaction. As the world continues to combat the COVID-19 pandemic, this breakthrough study opens new doors for innovative approaches in drug design and development, offering hope for more effective antiviral interventions.
 
Conclusion
The discovery of DNA-melting and strand-annealing activities in the SARS-CoV-2 nucleocapsid protein adds a new dimension to our understanding of the virus's molecular mechanisms. This breakthrough study conducted by Zunyi Medical University and Guizhou University not only deepens our knowledge of CoV-2 N but also provides crucial insights for the development of antiviral drugs. As the scientific community continues to unravel the mysteries of SARS-CoV-2, this research marks a significant step forward in the quest for effective interventions against COVID-19.
 
The study findings were published in the peer reviewed journal: Frontiers in Microbiology.
https://www.frontiersin.org/articles/10.3389/fmicb.2022.851202/full
 
For the latest COVID-19 News, keep on logging to Thailand Medical News.
 

MOST READ

Dec 11, 2024  1 month ago
Nikhil Prasad
Nov 26, 2024  2 months ago
Nikhil Prasad
Nov 19, 2024  2 months ago
Nikhil Prasad
Nov 12, 2024  2 months ago
Nikhil Prasad
Nov 05, 2024  3 months ago
Nikhil Prasad
Nov 05, 2024  3 months ago
Nikhil Prasad
Jul 25, 2024  6 months ago
Nikhil Prasad
Jul 24, 2024  6 months ago
Nikhil Prasad
Jun 10, 2023  2 years ago
COVID-19 News - DNA Methylation - Asymptomatic SARS-CoV-2 Infections