For The Latest Medical News, Health News, Research News, COVID-19 News, Pharma News, Glaucoma News, Diabetes News, Herb News, Phytochemical News, Thailand Cannabis News, Epigenetic News, Cancer News, Doctor News, Hospital News, Oral Cancer News

BREAKING NEWS
Source: Medical News - SARS-CoV-2 & Cancer  Aug 04, 2022  2 years, 5 months, 2 weeks, 4 days, 12 hours, 41 minutes ago

BREAKING! Study Finds That Cancer Causing Genes Are Upregulated In SARS-CoV-2 Infected Individuals!

37233 Shares
facebook sharing button Share
twitter sharing button Tweet
linkedin sharing button Share
BREAKING! Study Finds That Cancer Causing Genes Are Upregulated In SARS-CoV-2 Infected Individuals!
Source: Medical News - SARS-CoV-2 & Cancer  Aug 04, 2022  2 years, 5 months, 2 weeks, 4 days, 12 hours, 41 minutes ago
SARS-CoV-2 And Cancers: Since the start of the COVID-19 pandemic, numerous scientists have been worried about the post-infection long term health effects of the SARS-CoV-2 virus as it has been known that most viruses can cause long term damages to the host body, some resulting in fatal outcomes. DNA Viruses like Epstein-Barr virus, human papilloma virus, hepatitis B virus, and human herpes virus-8 and RNA viruses like human T lymphotrophic virus type 1 and hepatitis C viruses are already known to be able to cause development of cancers. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994798/
 


Thailand Medical News had been warning about the possibility of the SARS-CoV-2 viruses being oncogenic while many doctors were reporting a sudden rise of what is known as accelerated aggressive cancers over the last 18 months. Many subsequent studies also indicated that SARS-CoV-2 was capable of triggering various cancers. However there seems to be a concerted effort by authorities at the U.S. CDC, U.S.NIH. WHO, ECDC and other relevant agencies to either conceal or down play the carcinogenic effects of the SARS-CoV-2 virus.
 
https://www.thailandmedical.news/news/great-news-study-shows-that-sars-cov-2-protein-nsp13-is-able-to-cause-dna-damage-and-dysregulate-tumor-suppressor-gene-p53,-increasing-cancer-risk
 
https://www.thailandmedical.news/news/breaking-study-discovers-sars-cov-2-could-be-carcinogenic-as-it-causes-mutagenesis,-telomere-dysregulation-and-impairs-dna-mismatch-repair
 
https://www.thailandmedical.news/news/breaking-new-international-study-warns-that-sars-cov-2-infections-will-lead-to-cancers-especially-colorectal-cancers-due-to-disruption-in-autophagy
 
https://www.thailandmedical.news/news/most-who-have-been-exposed-to-the-proteins-of-the-sars-cov-2-virus-will-have-shortened-lifespans-stop-using-fluvoxamine-for-ba-2-infections
 
https://www.thailandmedical.news/news/breaking-news-chinese-researchers-discover-circrnas-encoded-by-sars-cov-2-virus-that-can-cause-cancer-millions-expected-to-get-cancer-eventually
 
microbiome-dysbiosis-increases-risk-for-colorectal-cancer">https://www.thailandmedical.news/news/post-covid-19-individuals-advised-to-take-probiotics-as-study-shows-sars-cov-2-induced-gut-microbiome-dysbiosis-increases-risk-for-colorectal-cancer
 
https://www.thailandmedical.news/news/breaking-research-reveals-that-tmprss2,-an-endothelial-cell-surface-protein-that-is-involved-in-sars-cov-2-cell-entry,-is-also-a-tumor-suppressor
 
https://www.thailandmedical.news/news/breaking-sars-cov-2-infection-induces-increase-of-gp73-that-causes-dysglycaemia-increased-gp73-could-also-imply-future-liver-disease-and-liver-cancer
 
https://www.thailandmedical.news/news/breaking-mutations-on-omicron-non-structural-protein-6-nsp6-alters-viral-disruption-modes-of-autophagy-in-host,-leading-to-possibly-more-serious-long-
 
https://www.thailandmedical.news/news/malaysian-researchers-discover-that-sars-cov-2-infections-and-lung-cancer-share-common-pathways-and-genes
 
https://www.thailandmedical.news/news/can-sars-cov-2-especially-the-omicron-variant-cause-hpv-and-oncogenic-hpv-reactivation-urgent-studies-warranted-based-on-growing-incidences
 
https://www.thailandmedical.news/news/covid-19-and-cancer-study-shows-that-sars-cov-2-and-usage-of-anti-covid-19-drugs-can-reactivate-oncogenic-viruses-and-increase-risk-of-cancer
 
https://www.thailandmedical.news/news/must-read-covid-19-questions-can-the-sars-cov-2-coronavirus-ultimately-also-cause-cancer
 
https://www.thailandmedical.news/news/breaking-brazil-researchers-validates-that-sars-cov-2-utilizes-human-host-protein-pcna-for-replication-while-dna-of-the-host-cells-are-damaged
 
https://www.thailandmedical.news/news/breaking-hypothesis-that-majority-exposed-to-sars-cov-2-will-have-shortened-lifespans-validated-by-study-showing-nsp2-impairs-human-4ehp-gigyf2-comple
 
https://www.thailandmedical.news/news/breaking-swedish-study-shows-that-sars-cov-2-causes-epigenetic-changes-to-various-genes-in-human-host
 
It should also be noted that as a result of SARS-CoV-2 either damaging or dysregulating various immune cells, cancers cells are unchecked in the early stages and are allowed to proliferate even rapidly.
 
A new bioinformatics study has alarmingly found individuals infected with the SARS-CoV-2 coronavirus have an upregulation of various oncogenic genes especially in the peripheral blood mononuclear cells (PBMCs).
 
The study team from Tehran University of Medical Sciences observing that the relation between SARS-CoV-2 infection and cancer has been less addressed, aimed to discover any possible links between SARS-CoV-2 infection and cancer development in a bioinformatics study.
 
For the study, the pertinent datasets were chosen from the GEO database. COVID-19 was searched for differentially expressed genes where |Log2 FC| > 1 and P < 0.05 were deemed statistically significant. The ClusterProfiler package employed gene ontology and pathway enrichment analysis for common genes. Functional interaction of proteins was predicted using STRING online then Cytoscape analysis was carried out to determine the target genes. Finally, gene set enrichment analysis was performed to find any correlation between candidate genes and different types of cancer.
 
The SARS-CoV-2 And Cancers study findings shockingly showed that numerous cancer-related genes were up-regulated in SARS-CoV-2 infected patients, particularly those genes participating in the cell cycle regulation or engaged in cellular senescence processes.
 
The study findings suggested that SARS-CoV-2 can be considered a potential risk factor for increasing the probability of developing cancer.
 
The study findings were published on a peer review platform: Research Square, and are currently being peer reviewed. https://www.researchsquare.com/article/rs-1894265/v1
 
Though the SARS-CoV-2 predominantly is a pulmonary disease, but other complications such as heart failure, brain damage and kidneys impairment have been reported. To date, limited studies have described SARS-CoV-2 as a potential risk factor for developing cancer.
 
Former analysis on transcriptomic databases suggested that SARS-CoV-2 induces the expression of the host transcription factors which also could be identified in NHBE, A549, and Calu-3 lung cancer cell lines. In the course of SARS-CoV-2 invasion host immune checkpoints and cytokine pathways such as programmed death ligand 1 (PDL1), PDL2, interleukin 6 (IL 6), type II interferon, and NF-Kappa B (NF-κB) are activated in order to wipe-out the infection. These pathways also manifested in cancer cell lines similar to host reaction against SARS-CoV-2.
https://www.nature.com/articles/s41598-021-82221-4
 
A past bioinformatic study analyzed the gene expression pattern of 10 most life-threatening cancers. The TCGA database results demonstrated up-regulation of CREB1, PTEN, SMAD3, and CASP3 genes in pancreatic adenocarcinoma. Based on their conclusion, SARS-CoV-2 potentially could induce the expression of these genes through interaction with angiotensin-converting enzyme 2 (ACE2) on the cell surface of pancreatic cells. https://pubmed.ncbi.nlm.nih.gov/34155232/
 
It has also been suggested that SARS-CoV-2 is involved in tumorigenesis mechanisms that control cell proliferation, death, migration as well as immune system responses.
https://www.nature.com/articles/s41598-021-84780-y
 
Due to the complexity of SARS-CoV-2 pathogenicity, the long-term health consequences demand more investigations. In this context, this new study findings revealed that the up-regulated genes in COVID-19 is similar to cancer processes at least in three different categories including: cell cycle regulation, viral carcinogenesis, and cellular senescence.
 
It should be noted that the most characteristic feature of cancer development is dysregulation of the cell cycle machinery. https://pubmed.ncbi.nlm.nih.gov/35271993/
 
Importantly, the cell cycle regulatory mechanism is tightly associated with the cellular processes of proliferation, differentiation, and apoptosis.
https://pubmed.ncbi.nlm.nih.gov/19561645/
 
It has been found that any disruption in the cell cycle regulation leads to molecular changes that results in aberrant biological behavior of cancer cells.
https://pubmed.ncbi.nlm.nih.gov/35247630/
 
This includes resistance to DNA damages, apoptosis and anti-mitotic programs as well as activation of oncogenes or deactivation of tumor suppressor genes that are mediated by cell cycle regulatory mechanisms.
https://pubmed.ncbi.nlm.nih.gov/27801298/
 
Alarmingly, this new study findings found that 17 cell cycle-related genes were up-regulated in SARS-CoV-2 patients including: CCNB2, ESPL1, TTK, CCNA2, CCNB1, CDC6, CDC20, CDK1, BUB1, CHEK1, BUB1B, CDC45, PLK1, CCNA1, ORC1 AND E2F1. Any dysregulation in the expression of these genes is linked with various cancers, such as breast cancer, digestive tract cancer, bone cancer, endometrial cancer, skin cancer, brain cancer, lung cancer and so on.
 
The cyclin B2 (CCNB2) is a cell cycle regulator and a member of B-type cyclins superfamily.
 https://pubmed.ncbi.nlm.nih.gov/17533373/
 
CCNB2 deficiency causes the G2/M checkpoint to fail during the cell cycle, resulting in gene mutations and cancer.
https://pubmed.ncbi.nlm.nih.gov/20404349/
 
The role of CCNB2 in the development of various cancers and metastatic conditions has also been documented. Its overexpression is associated with poor prognosis in hepatocellular carcinoma (HCC) patients.
https://pubmed.ncbi.nlm.nih.gov/31101236/
 
Targeting CCNB2 via miR-582-3p seems to inhibit the proliferation of acute myeloid leukemia. https://pubmed.ncbi.nlm.nih.gov/31844417/
 
An up-regulated expression of CCNB2 was noted in human triple-negative breast cancer (TNBC) cells which ultimately contributed to some pathological features in TNBC patients. In addition, CCNB2 increases the proliferation of TNBC cells In Vitro and causes TNBC tumors in mice.
https://pubmed.ncbi.nlm.nih.gov/34354775/
 
Viruses are one of the well-known causes of various malignancies in human.
https://pubmed.ncbi.nlm.nih.gov/24468737/
 
So far, seven human oncoviruses have been associated with malignancies. These include high-risk types of human papilloma virus (HPV), hepatitis B and hepatitis C viruses (HBV and HCV), Epstein-Barr virus (EBV) and Kaposi’s Sarcoma-Associated Herpesvirus (KSHV), Merkel cell polyomavirus (MCPyV), and human T-cell leukemia virus I (HTLV-1). https://pubmed.ncbi.nlm.nih.gov/17940621/
 
The detailed pathophysiology of this carcinogenic potential in viruses affecting humans is not fully understood. It seems, oncogenic viruses share similar characteristics that enable them to cause cancer.
https://pubmed.ncbi.nlm.nih.gov/30143749/
 
In this regard, the study findings showed 12 up-regulated genes with possible relation to viral carcinogenesis in SARS-CoV-2 blood sample, including: H4C8, H2BC7, CDC20, H2BC5, CDK1, H2BC17, H2BC9, CHEK1, EIF2AK2, CCNA1, H2BC8 and CCNA2.
 
Though for the most part, these genes contribute to viral replication, dysregulation in expression of these genes could disrupt cellular processes such as apoptosis and cell-cycle checkpoints that consequently leads to malignancy.
https://pubmed.ncbi.nlm.nih.gov/24906315/
 
https://pubmed.ncbi.nlm.nih.gov/30510918/
 
Cell division cycle 20 (CDC20) is a regulatory protein that interacts with the cell cycle's anaphase-promoting complex/cyclosome (APC/C) and plays a crucial role in carcinogenesis and cancer progression.
https://pubmed.ncbi.nlm.nih.gov/20831816/
 
Importantly, upregulation of CDC20 has been shown in various malignancies including pancreatic ductal adenocarcinoma, oral squamous cell carcinoma, gastric cancer, cervical cancer and hepatocellular carcinoma.
https://pubmed.ncbi.nlm.nih.gov/22475564/
 
https://pubmed.ncbi.nlm.nih.gov/16777988/
 
https://pubmed.ncbi.nlm.nih.gov/24551295/
 
https://pubmed.ncbi.nlm.nih.gov/21338529/
 
https://pubmed.ncbi.nlm.nih.gov/34512169/
 
A past study showed that CDC20 was implicated as an oncoprotein promoting the proliferation of cancer cells.
https://pubmed.ncbi.nlm.nih.gov/21156971/
 
Furthermore, targeting CDC20 hinders the mitosis process in cancer cells. This may seem better treatment option than traditional spindle-perturbing medicines for curing cancer. https://pubmed.ncbi.nlm.nih.gov/23151139/
 
In another study, up-regulation of CDC20 was associated with proliferation of Hepatocellular carcinoma cells and in vitro siRNA-mediated knockdown of CDC20 was shown to restrict HCC progression. https://pubmed.ncbi.nlm.nih.gov/25069850/
 
Furthermore, the suppression of CDC20 is linked with p21 activation, which in turn impedes the cell cycle through inhibition of G2/M CDKs activity and transcriptional activation of E2F. Cellular senescence plays a crucial role in preventing cancer development. Senescence is a protecting factor against cancer development that is induced by mutations in oncogenes or the DNA damage. The senescence rate was found to be high in premalignant conditions and low in invasive lesions. Mutations in key oncogenes may lead to senescence which consequently destroys premalignant cells before becoming invasive. Therefore, curbing the process of senescence is a major contributor to invasive cancer development from pre-malignant lesions.
 
It is suggested that the loss of one of the essential senescence effectors such as p53 might be a cause for senescence failure. https://pubmed.ncbi.nlm.nih.gov/32182711/
As a result of this deficiency, the oncogene promotes the cancer growth, inexorably. The immune anti-tumor response elicited by senescent cells is known as "senescence surveillance. In contrast, in certain instances, stromal cell senescence seems to promote tumor development. This might be due to the proangiogenic effects of particular senescence-associated secretory phenotype (SASP) components such as vascular endothelial growth factor (VEGF), or the impact of senescent fibroblasts on the surrounding tumor cells.
 
It is also evident that the "immune senescence" or the aging of the immune system as people become older, may cause the failure of immune surveillance leading to the development of cancer in the elderly. This phenomenon was researched in peripheral blood T cells with telomere shortening and its association with cancer development. https://pubmed.ncbi.nlm.nih.gov/17313487/
 
There are multiple factors and molecules involved in the senescence signaling. These include various oncogenes and tumor suppressors that may be up or down regulated as part of the carcinogenic process, making the identification of senescence difficult.
 
In SARS-CoV-2 patients, the study findings showed 10 up-regulated genes which take part in the senescence which were: CCNB1, FOXM1, CCNB2, CDC25A, CDK1, CHEK1, CCNA1, E2F1, CCNA2 AND MYBL2.
 
In the aforementioned list, cell cycle checkpoint kinase 1 (CHEK1) is a conserved protein kinase that acts as a limiting agent in the cell cycle. CHEK1 is generally inactive in the absence of DNA damage, it is mainly activated by ATM in response to double-strand DNA breaks, and its activation involves dimerization and autophosphorylation.
 
CHEK1 is one of the most important speed limiting factors in the cell cycle and its overexpression may promote the development of human malignant tumors, such as lung, bladder, colon, stomach, ovarian, and cervical cancers.
https://pubmed.ncbi.nlm.nih.gov/31933717/
 
Overall, the study findings show that SARS-CoV-2 infections leads to the upregulation of various oncogenic genes and suggest that Post COVID individuals should go for frequent cancer screenings. The study findings may also provide answers as to why there is now a sudden increase in cancers especially accelerated aggressive cancers.
For more on SARS-CoV-2 And Cancers, keep on logging to Thailand Medical News.

MOST READ

Dec 11, 2024  1 month ago
Nikhil Prasad
Nov 26, 2024  2 months ago
Nikhil Prasad
Nov 19, 2024  2 months ago
Nikhil Prasad
Nov 12, 2024  2 months ago
Nikhil Prasad
Nov 05, 2024  3 months ago
Nikhil Prasad
Nov 05, 2024  3 months ago
Nikhil Prasad
Jul 25, 2024  6 months ago
Nikhil Prasad
Jul 24, 2024  6 months ago
Nikhil Prasad
Jun 10, 2023  2 years ago
COVID-19 News - DNA Methylation - Asymptomatic SARS-CoV-2 Infections