For All The Latest Medical News, Health News, Research News, COVID-19 News, Dengue News, Glaucoma News, Diabetes News, Herb News, Phytochemical News, Cardiology News, Epigenetic News, Cancer News, Doctor News, Hospital News

BREAKING NEWS
Source: Ozone-SARS-CoV-2  Jan 20, 2022  2 years, 10 months, 2 days, 7 hours, 27 minutes ago

British Study Confirms That Ozone Gas Is Effective For SARS-CoV-2 Disinfection

1853 Shares
facebook sharing button Share
twitter sharing button Tweet
linkedin sharing button Share
British Study Confirms That Ozone Gas Is Effective For SARS-CoV-2 Disinfection
Source: Ozone-SARS-CoV-2  Jan 20, 2022  2 years, 10 months, 2 days, 7 hours, 27 minutes ago
Ozone-SARS-CoV-2: Researchers from the College of Engineering-Swansea University and the, Division of Infection & Immunity-Cardiff University have in a new study demonstrated that Ozone gas is effective as a SARS-CoV-2 disinfectant.


 
The study evaluated the inactivation of SARS-CoV-2 coronavirus, the pathogen responsible for COVID-19, by ozone using virus grown in cell culture media either dried on surfaces (plastic, glass, stainless steel, copper, and coupons of ambulance seat and floor) or suspended in liquid.
 
The Ozone-SARS-CoV-2 study findings showed that treatment in liquid reduced SARS-CoV-2 at a rate of 0.92 ± 0.11 log10-reduction per ozone CT dose (mg min/L); where CT is ozone concentration times exposure time.
 
However, on surface, the synergistic effect of CT and relative humidity (RH) was key to virus inactivation; the rate varied from 0.01 to 0.27 log10-reduction per ozone CT value (g min/m3) as RH varied from 17% to 70%.
 
Depletion of ozone by competitive reactions with the medium constituents, mass transfer limiting the penetration of ozone to the bulk of the medium, and occlusion of the virus in dried matrix were postulated as potential mechanisms that reduce ozone efficacy. RH70% was found plausible since it provided the highest disinfection rate while being below the critical RH that promotes mould growth in buildings.
 
The study findings conclude that through careful choice of (CT, RH), gaseous ozone is effective against SARS-CoV-2.
 
The findings are of significance to a growing field where ozone is applied to control the spread of COVID-19.
 
The study findings were published in the peer reviewed Journal of Hazardous Materials. https://www.sciencedirect.com/science/article/pii/S0304389422000395
 
Thailand Medical News had already highlighted about the use of ozone as a SARS-CoV-2 disinfectant since February 2020. https://www.thailandmedical.news/news/ozone-can-be-used-to-destroy-the-new-coronavirus-and-disinfect-areas
 
The SARS-CoV-2 virus efficiently transmits via inhalation of contaminated aerosols or by touching contaminated surfaces. Furthermore, these virus particles have been shown to maintain their infectiousness on contaminated surfaces for up to 21 days in winter, up to 7 days in spring/fall environments, and up to 3-4 days in indoor environments. The control of coronavirus disease 19 (COVID-19), therefore, not only requires the implementation of prophylactic vaccines but an effective elimination of SARS-CoV-2 particles from the contaminated surfaces as well.
 
Numerous methods have been tested to eliminate SARS-CoV-2 from the environment, including chemical disinfection, heat inactivation, and UV irradiation. Chemical disinfectants have been either used in gas form (e.g., ozone, H2O2 vapors) or liquid form (e.g., chlorine-based agents, H2O2), with unique advantag es and disadvantages of each.
 
Ozone which is a gaseous compound is also a strong oxidant, has been proven to be more effective than other chemical disinfectants and can be easily applied in small and large zones. Moreover, it can be quickly produced from oxygen, and later after treatment, it decomposes back to safe oxygen.
 
It has been found that ozone is particularly lethal against viruses through peroxidation of their surface lipids present in the virus envelope and damages the protein capsid and genome. In addition, enveloped viruses (like SARS-CoV-2) are more vulnerable to ozone than non-enveloped viruses due to the high reactivity of ozone with the lipid bilayer of the envelope.
 
However the efficacy of ozone gas to inactivate surface or airborne viruses depends on several operating factors, including the product ozone concentration times exposure time (CT value), the relative humidity (RH), the chemical composition of the media carrying the virus (water/ biological fluid/ aerosol, or dried/wet surface), and the texture of the surface.
 
To date, none of the studies done so far have tested all these factors on the efficacy of ozone as a SARS-CoV-2 disinfectant.
 
The study findings confirmed that ozone is effective for the inactivation of SARS-CoV-2 in liquid cell culture media and on surfaces.
 
The study findings showed that ozone attacked the SARS-CoV-2 virus rapidly in liquid cell culture media at a rate constant of 7 × 105 M-1 s-1 and reduced the SARS-CoV-2 at a rate of 0.92 ± 0.11 log10-reduction per ozone CT dose (mg min/L).
 
Interestingly it was found the ozone consumption was about 8 times higher in the presence of the virus solution when compared to no virus control. The study team suggests that the high ozone depletion in the presence of the virus was not only due to ozone consumption by the virus itself but also by constituents of the culture media.
 
Importantly the surface experiments (culture media containing virus was dried on a plastic surface) demonstrated that the synergistic effect of CT and RH is the key to virus inactivation. The virus reduction rate varied from 0.01 to 0.27 log10-reduction per ozone CT value (g min/m3), with RH ranging from 17% to 70%. RH 70% was suggested as a plausible working relative humidity since it provided the highest SARS-CoV-2 disinfection rate while staying below the critical RH that promotes mold growth in buildings.
 
It is significant to note that the ozone mass transfer experiments demonstrated that the ozone flux to a liquid surface was 100 times higher than to a dried surface, suggesting that the rehydration of dried virus medium at high RH enhanced virus exposure to ozone, thereby its inactivation.
 
The study team also found that the composition of the medium could limit viral inactivation through depletion of ozone by competitive reactions (such as the constituents present in the cell culture media or the biological fluids), mass transfer limiting the penetration of ozone to the bulk of the matrix, and potential occlusion of the virus in crystalline materials (upon drying, the inorganic salts in solution crystallize and occlude the virus).
 
Detailed evaluation of the SARS-CoV-2 inactivating effect of gaseous ozone on different surface materials demonstrated that the ozone effectively reduced infectious virus by 99% on all rigid, inert surfaces, i.e., stainless steel, glass, and plastic.
 
Copper, known to show antimicrobial effect, was found to inactivate the virus even in the absence of ozone.
 
Interestingly in post-ozone treatment, the virus could not be recovered from the tested porous materials i.e., ambulance seat and ambulance floor, giving room for speculations that the porous ambulance seat and floor either inactivated or trapped the virus particles, preventing their elution during virus recovery.
 
The study team concluded, “Through careful choice of (CT, RH), gaseous ozone is effective against SARS-CoV-2 and our results are of significance to a growing field where ozone is applied to control the spread of COVID-19.”
 
For readers who are interest to purchase portable home ozone generators with timers, feel free to contact us.
 
For more about Ozone-SARS-CoV-2, keep on logging to Thailand Medical News.
 

MOST READ

Nov 05, 2024  17 days ago
Nikhil Prasad
Jul 25, 2024  4 months ago
Nikhil Prasad
Jul 24, 2024  4 months ago
Nikhil Prasad
Jun 10, 2023  1 year ago
COVID-19 News - DNA Methylation - Asymptomatic SARS-CoV-2 Infections
Aug 04, 2022  2 years ago
Source: Medical News - SARS-CoV-2 & Cancer