For The Latest Medical News, Health News, Research News, COVID-19 News, Pharma News, Glaucoma News, Diabetes News, Herb News, Phytochemical News, Thailand Cannabis News, Cancer News, Doctor News, Thailand Hospital News, Oral Cancer News, Thailand Doctors

BREAKING NEWS
Nikhil Prasad  Fact checked by:Thailand Medical News Team Mar 03, 2024  1 year, 2 weeks, 3 days, 1 hour, 33 minutes ago

Severe COVID-19 Has A Distinct Cell-Free DNA Methylation Signature

1921 Shares
facebook sharing button Share
twitter sharing button Tweet
linkedin sharing button Share
Severe COVID-19 Has A Distinct Cell-Free DNA Methylation Signature
Nikhil Prasad  Fact checked by:Thailand Medical News Team Mar 03, 2024  1 year, 2 weeks, 3 days, 1 hour, 33 minutes ago
COVID-19 News: The COVID-19 pandemic has sparked intensive research efforts to understand the virus's impact on various aspects of human health. In this COVID-19 News report, a groundbreaking study is covered that was conducted by researchers from Peking Union Medical College Hospital, Peking Union Medical College, and the Chinese Academy of Medical Sciences, in collaboration with Geneplus-Shenzhen, China, that delved into the intricate world of cell-free DNA (cfDNA) methylation patterns. Their investigation explores the potential of cell-specific cfDNA markers in predicting and reflecting COVID-19 severity and outcomes, shedding light on the cellular dynamics associated with the disease.


Cell-free DNA methylation reveals cell-specific tissue injury and correlates with disease severity and patient outcomes in COVID-19. Comparison of methylation levels among three cohorts. A Overview of three cohorts for DNA methylation profiles comparison. B The percentage of methylated CpG sites in three cohorts; C principal component analysis of CpG methylation levels

The Epigenetic Landscape: DNA Methylation as a Window
DNA methylation, a crucial epigenetic modification, plays a pivotal role in gene expression regulation and maintaining physiological functions. Recent revelations regarding distinct methylation patterns specific to cell types have opened avenues for understanding cell-specific responses in health and disease. Leveraging this breakthrough, the researchers embarked on a proof-of-concept study, utilizing COVID-19 as a model to investigate whether cell-specific cfDNA methylation signatures could serve as markers for disease severity and outcomes.
 
Methodology: Decoding the Methylation Patterns
To unravel the methylation intricacies associated with COVID-19, the team conducted whole-genome methylation sequencing of cfDNA from different cohorts, including healthy individuals, non-hospitalized COVID-19 cases, and severe COVID-19 patients admitted to the intensive care unit (ICU). The analysis focused on identifying differentially methylated regions (DMRs) and employed gene ontology pathway enrichment analyses to understand the locus-specific methylation differences between cohorts.
 
Results: Unveiling Global Methylation Dynamics
The study unearthed global reductions in cfDNA methylation levels in COVID-19 patients compared to healthy controls. Notably, severe COVID-19 patients exhibited a distinct cfDNA methylation signature with the identification of over 11,000 DMRs. Pathway enrichment analyses highlighted the involvement of these DMRs in immune response pathways, indicating a potential link between methylation patterns and the dysregulated immune response observed in severe cases.
 
Cell-Specific Insights: A Resolution at the Cellular Level
A novel algo rithm was employed to estimate the tissue fraction of cfDNA derived from lung and immune cells at a cell-type resolution. This approach revealed elevated levels of cfDNA from lung cells, particularly alveolar epithelial cells, bronchial epithelial cells, and lung endothelial cells, in COVID-19 patients compared to healthy controls. Furthermore, severe cases exhibited distinctive profiles, with higher levels of cfDNA from B cells, T cells, and granulocytes and lower levels from natural killer cells compared to non-hospitalized patients.
 
Key Biomarker: Alveolar Epithelial Cells
The researchers identified cfDNA derived from alveolar epithelial cells as a key biomarker, demonstrating optimal performance in differentiating COVID-19 severity levels, lung injury extents, Sequential Organ Failure Assessment (SOFA) scores, and in-hospital deaths. The robust discriminatory power of this biomarker, with an area under the receiver operating characteristic curve exceeding 0.9 in various assessments, highlights its potential clinical utility.
 
Discussion: Unraveling the Epigenetic Code of COVID-19
Drawing on previous studies, the authors compared their findings with existing literature, emphasizing the unique contribution of their cell-specific approach. The observed global reductions in cfDNA methylation levels and the distinct methylation profiles associated with severe cases underscore the potential of cfDNA methylation analysis in capturing disease-related abnormalities.
 
Insights into Immune Responses: cfDNA as an Immunomodulatory Indicator
The study also delved into the abnormal presence of immune cells, as reflected by cfDNA methylation signatures. Severe COVID-19 cases exhibited higher levels of cfDNA from various immune cells, indicating a potential link between immune cell death and disease severity. Notably, the proportion of cfDNA from natural killer cells was reduced in severe cases, suggesting a nuanced relationship between immune response and disease outcomes.
 
Tissue Injury Traced: The Alveolar Epithelial Cell Connection
A critical aspect of the study involved tracing tissue injury, particularly in lung cells, using cfDNA methylation. The researchers observed a correlation between the severity of lung injury and the tissue fraction of cfDNA derived from alveolar epithelial cells. This novel approach provides a unique window into the cellular dynamics of lung damage, offering insights into the progression of COVID-19.
 
Conclusion: Epigenetic Signatures as Disease Barcodes
In conclusion, this study unveils the distinct cfDNA methylation signature associated with severe COVID-19, providing a comprehensive understanding of the epigenetic landscape of the disease. The cell-specific resolution achieved through this analysis not only highlights the unique contributions of different cell types but also underscores the potential of cfDNA methylation as a diagnostic and prognostic tool. The identified biomarker, cfDNA derived from alveolar epithelial cells, emerges as a promising indicator of disease severity and clinical outcomes, paving the way for future applications in assessing tissue injuries in diseases characterized by multi-organ dysfunction. This research marks a significant step towards unraveling the epigenetic code of COVID-19 and harnessing its potential for precision medicine.
 
The study findings were published in the peer reviewed journal: Clinical Epigenetics.
https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-024-01645-7
 
For the latest COVID-19 News, keep on logging to Thailand Medical News.

MOST READ

Feb 17, 2025  1 month ago
Nikhil Prasad
Dec 11, 2024  3 months ago
Nikhil Prasad
Nov 26, 2024  4 months ago
Nikhil Prasad
Nov 19, 2024  4 months ago
Nikhil Prasad
Nov 12, 2024  4 months ago
Nikhil Prasad
Nov 05, 2024  4 months ago
Nikhil Prasad
Nov 05, 2024  5 months ago
Nikhil Prasad
Jul 25, 2024  8 months ago
Nikhil Prasad
Jul 24, 2024  8 months ago
Nikhil Prasad

FROM CANCER

LATEST ON MEDICAL DEVICES